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Background on Gaussian Chain Graph Models
Chain graph models

* Given partition {Xl, . ,XC}, where x- € RI7|
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p(x) = H p(XT‘}_(pa(T))

CRF as chain component model:
* Directed edges: Xpa(r) —7 X7
 Undirected edges: X-

 Conditional independencies from moralized graph:
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Non-adjacent variables in moralized graph are conditionally independent given all other variables.

Chain Component Models

Multivariate Linear Regression (Abegaz & wit, 2013) Model:

; N(BTXpa(T), @;1)

directed edges undirected edges

 Markov properties for chain graph models with CRF components do not hold.

Conditional Gaussian Graphical Model (Lauritzen & Wermuth, 1989) (CGGM):
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undirected edges directed edges
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 Markov properties for chain graph models with CRF components hold.

Almost no work on structure learning for Gaussian chain graph models

Learning the Structure of Gaussian Chain Graph Models

Opt(ijmization for linear regression chain component models:

C C
min 3 tr (Xr — Xpa(BD)O, (X, — Xy BD)T) = Nlog [0, + A S B, + v €
T=1

T=1 T=1
 Bi-convex — multiple local optima (Rothman et al., 2010)

. Slow optimization algorithms

Optimization for CGGM chain component models:

C C
min —L£(X; @) + )\Z H@T,pa(’r)Hl T VZ 1©-]|1
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vl Convex — global optimum (Sohn & Kim, 2012)
vl Fast optimization algorithms (Wytock & Kolter, 2013)

Advantages of CGGMs as Chain Component Models

Sparse Multivariate

Chain Component Model Linear Regression

Sparse CGGM

Optimization Bi-convex Convex
Computation time Slow Fast
Structured sparsity No Yes
Leverage model structure for No Yes

semi-supervised learning?

Sparse Gaussian Chain Graph Models WL

Calvin McCarter & Seyoung Kim

Sparse Two-Layer Gaussian Chain Graph Models

p(y, X) :p(Y|X)p(X) r Sparse CGGM sparse GGM
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Sparse Multi-Layer Gaussian Chain Graph Models for
Integrative Genomic Data Analysis

Learn cascades of networks with multiple data types
instead of a single network from gene expression data

Discover functional mapping
between modules in different layers
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Semi-supervised learning with EM

for missing gene-expression data
that are often costly to collect
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Simulation Results
Better graph structure recovery and prediction accuracy,

regardless of true component model!

* Problem size: 500 x’s, 100 y’s, 50 Z’s
e 400 training samples with 200 samples missing y’s

Linear Regression-based True Component Model

Precision/recall curves for graph structure recovery
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Prediction errors (MSE on test set)
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CGGM-based True Component Model

Precision/recall curves for graph structure recovery
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Recovery of structured sparsity using CGGM-based component model
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Integrative Genomic Data Analysis

3 layer chain graph model.
1000 SNPs, 200 gene expressions, and 100 phenotypes
from pancreatic islets study for diabetic mice.
306 training samples, 100 validation samples, 100 test samples
Gene expression data missing for 150 mice.
Task CG-semi CG LR-semi LR

y | x,2z 0.9070 0.9996 1.0958 0.9671
z | x 1.0661 1.0585 1.0505 1.0614
y | x 0.8989 0.9382 0.9332 0.9103
z |y 1.0712 1.0861 1.1095 1.0765
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