# Sparse Gaussian Chain Graph Models



Calvin McCarter & Seyoung Kim

## Background on Gaussian Chain Graph Models

### Chain graph models

Given partition  $\{\mathbf{x}_1,\ldots,\mathbf{x}_C\}$ , where  $\mathbf{x}_{ au}\in\mathbb{R}^{| au|}$ 

$$p(\mathbf{x}) = \prod_{\tau=1}^{C} p(\mathbf{x}_{\tau} | \mathbf{x}_{\text{pa}(\tau)})$$

CRF as chain component model:

- Directed edges:  $\mathbf{x}_{\mathrm{pa}( au)} o \mathbf{x}_{ au}$ • Undirected edges:  $\mathbf{X}_{\mathcal{T}}$
- Conditional independencies from moralized graph:



Non-adjacent variables in moralized graph are conditionally independent given all other variables.

### **Chain Component Models**

Multivariate Linear Regression (Abegaz & Wit, 2013) Model:

$$N(\mathbf{B}_{ au}\mathbf{x}_{\mathrm{pa}( au)},\mathbf{\Theta}_{ au}^{-1})$$
 directed edges undirected edges

• Markov properties for chain graph models with CRF components do not hold.

Conditional Gaussian Graphical Model (Lauritzen & Wermuth, 1989) (CGGM):

$$\exp\left(-\frac{1}{2}\mathbf{x}_{\tau}^{T}\boldsymbol{\Theta}_{\tau}\mathbf{x}_{\tau} - \mathbf{x}_{\tau}^{T}\boldsymbol{\Theta}_{\tau,\mathrm{pa}(\tau)}\mathbf{x}_{\mathrm{pa}(\tau)}\right)/A(\mathbf{x}_{\mathrm{pa}(\tau)})$$
undirected edges
$$= N\bigg(-\boldsymbol{\Theta}_{\tau}^{-1}\boldsymbol{\Theta}_{\tau,\mathrm{pa}(\tau)}\mathbf{x}_{\mathrm{pa}(\tau)}, \boldsymbol{\Theta}_{\tau}^{-1}\bigg) = N\bigg(\mathbf{B}_{\tau}\mathbf{x}_{\mathrm{pa}(\tau)}, \boldsymbol{\Theta}_{\tau}^{-1}\bigg) \text{ inference}$$

Markov properties for chain graph models with CRF components hold.

Almost no work on structure learning for Gaussian chain graph models

# Learning the Structure of Gaussian Chain Graph Models

Optimization for linear regression chain component models:

$$\min \sum_{\tau=1}^{C} \operatorname{tr} \left( (\mathbf{X}_{\tau} - \mathbf{X}_{\mathrm{pa}(\tau)} \mathbf{B}_{\tau}^{T}) \mathbf{\Theta}_{\tau} (\mathbf{X}_{\tau} - \mathbf{X}_{\mathrm{pa}(\tau)} \mathbf{B}_{\tau}^{T})^{T} \right) - N \log |\mathbf{\Theta}_{\tau}| + \lambda \sum_{\tau=1}^{C} \|\mathbf{B}_{\tau}\|_{1} + \gamma \sum_{\tau=1}^{C} \|\mathbf{\Theta}_{\tau}\|_{1}$$

Bi-convex – multiple local optima (Rothman et al., 2010)

■ Slow optimization algorithms

**Optimization for CGGM chain component models:** 

$$\min -\mathcal{L}(\mathbf{X}; \mathbf{\Theta}) + \lambda \sum_{\tau=1}^{C} \|\mathbf{\Theta}_{\tau, \mathrm{pa}(\tau)}\|_{1} + \gamma \sum_{\tau=1}^{C} \|\mathbf{\Theta}_{\tau}\|_{1}$$

- ☑ Convex global optimum (Sohn & Kim, 2012)
- ☑ Fast optimization algorithms (Wytock & Kolter, 2013)

| Advantages of CGGMs as Chain Component Models          |                                          |             |
|--------------------------------------------------------|------------------------------------------|-------------|
| Chain Component Model                                  | Sparse Multivariate<br>Linear Regression | Sparse CGGM |
| Optimization                                           | Bi-convex                                | Convex      |
| Computation time                                       | Slow                                     | Fast        |
| Structured sparsity                                    | No                                       | Yes         |
| Leverage model structure for semi-supervised learning? | No                                       | Yes         |

### Sparse Two-Layer Gaussian Chain Graph Models



# Sparse Multi-Layer Gaussian Chain Graph Models for Integrative Genomic Data Analysis

Learn *cascades of networks* with multiple data types instead of a *single network* from gene expression data



that are often costly to collect

### **Simulation Results**

Better graph structure recovery and prediction accuracy, regardless of true component model!

- Problem size: 500 x's, 100 y's, 50 z's
- 400 training samples with 200 samples missing y's

### Linear Regression-based True Component Model

Precision/recall curves for graph structure recovery



Prediction errors (MSE on test set)



#### **CGGM-based True Component Model**

Precision/recall curves for graph structure recovery



Prediction errors (MSE on test set)



Recovery of structured sparsity using CGGM-based component model



### Integrative Genomic Data Analysis

- 3 layer chain graph model.
- 1000 SNPs, 200 gene expressions, and 100 phenotypes
- from pancreatic islets study for diabetic mice.
- 306 training samples, 100 validation samples, 100 test samples

Wytock and Kolter. Sparse Gaussian conditional random fields: algorithms, theory, and application to energy forecasting. ICML 2013.

Gene expression data missing for 150 mice.

Task CG-semi CG LR-semi LR  $\mathbf{y} \mid \mathbf{x}, \mathbf{z} \mid 0.9070 \mid 0.9996 \mid 1.0958 \mid 0.9671$ **z** | **x** 1.0661 1.0585 1.0505 1.0614  $\mathbf{y} \mid \mathbf{x} = 0.8989 \ 0.9382 \ 0.9332 \ 0.9103$ **z** | **y** 1.0712 1.0861 1.1095 1.0765

#### References

Sohn and Kim. Joint estimation of structured sparsity and output structure in multiple-output regression via inverse-covariance regularization. AISTATS 2012. Abegaz and Wit. Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics 2013.