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Abstract
We describe additive kernel regression (Add-
KR), a generalisation of kernel least squares
methods for nonparametric regression. Nonpara-
metric methods typically allow us to consider a
richer class of functions over parametric meth-
ods. However, unlike their parametric counter-
parts they suffer from high sample complexity
in high dimensions and cannot be used to iden-
tify structure in the function. A common as-
sumption in high dimensional regression models
is to assume that the function is additive. In this
work, we leverage this assumption, but consid-
erably generalise existing additive models. We
propose a convex optimisation objective for our
problem and optimise it using Block Coordinate
Gradient Descent. We demonstrate that Add-KR
significantly outperforms existing algorithms for
nonparametric regression on moderate to high di-
mensional problems and can be used to identify
and exploit structure in the function.

1. Introduction
Given data (Xi, Yi)

n
i=1 where Xi ∈ RD, Y ∈ R and

(Xi, Yi) ∼ P , the goal of least squares regression methods
is to estimate the regression function f(x) = EP [Y |X =
x]. A popular method for regression is linear regression
which models f as a linear combination of the variables x,
i.e. f(x) = w>x for some w ∈ RD. Such methods are
computationally simple and have desirable statistical prop-
erties when the problem meets the assumption. However,
they are generally too restrictive for many real problems.
Nonparametric regression refers to a suite of regression
methods that only assume smoothness of f . In particular,
they do not assume any parametric form for f . As such,
they present a more powerful and compelling framework
for regression.

Both authors contributed equally to this work. The names appear
in alphabetical order.

While nonparametric methods consider a richer class of
functions, they suffer from severe drawbacks. Nonpara-
metric regression in high dimensions is an inherently dif-
ficult problem with known lower bounds depending expo-
nentially in dimension (Györfi et al., 2002). With rare ex-
ceptions, nonparametric methods typically work well only
under at most 4 − 6 dimensions. In addition they typi-
cally cannot be used to identify structure in the problem.
For instance, in the parametric setting, algorithms such as
the LASSO and group LASSO can be used to identify a
sparse subset of variables/groups to describe the function.
In this project we intend to make progress in both these
fronts by treating the estimate of the function as an addi-
tive function– f̂(·) = f (1)(·) + f (2)(·) + · · ·+ f (M)(·).

Our methods are based on Kernel Ridge Regression (KRR).
We minimize the squared-error loss with an RKHS norm
penalty to enforce smoothness and identify structure. This
leads to a convex objective function where the number of
parameters is the product of the number of samples and the
number of basis functions.

We present two concrete applications for our framework.
The first is on nonparametric regression in high dimen-
sions. Using additive models is fairly standard in high di-
mensional regression literature (Hastie & Tibshirani, 1990;
Ravikumar et al., 2009; Lafferty & Wasserman, 2005).
When the true underlying function f exhibits additive
structure, using an additive model for estimation is under-
standably reasonable. However, even when f is not ad-
ditive, using an additive model has its advantages. It is
a well understoon notion in Statistics that when we only
have a few samples, using a simpler model to fit our data
may give us a better tradeoff for estimation error against
approximation error. This is because additive functions are
statistically simpler than more general (non-additive) func-
tions. Typically, in most nonparametric regression meth-
ods using kernels such as the Nadaraya-Watson estimator
and Kernel Ridge Regression, the bias-variance tradeoff is
managed via the bandwidth of the kernel. Using an addi-
tive model provides another “knob” to control this tradeoff
and provides significant gains in high dimensional regres-
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sion. In this work, we propose the ESP Kernels which con-
strain the estimated function to be an addition of simpler
functions and provide favourable bias-variance tradeoffs in
high dimensions.

The second application is on identifying structure in the
true function f . In some genomics applications, the func-
tion of interest depends on the states of possibly several
proteins. However, the true dependence may be just an
addition of sparse pairwise dependencies. For instance a
function of 100 variables may take the form f(x1001 ) =
f (1)(x1, x2)+f

(2)(x1, x9)+f
(3)(x8, x9). Identifying such

structure from a set of candidate sets of variables and learn-
ing the relevant functions is an important problem in Ge-
nomics. We use the additive regression framework by op-
timising for the individual functions f̂ (j) over a space of
functions on a subset of variables. A similar idea was first
explored by Bach (2008). Our work extends Sparse Ad-
ditive Models (SpAM) (Ravikumar et al., 2009) to multi-
dimensional nonparametric basis functions. Our proposed
method also extends recent work on Generalized Additive
Models plus Interactions (Lou et al., 2013). However, in
this work the interaction model was assumed to follow a
specific functional form, leading to an optimization method
tailored to their interaction model. Our research is also
related to existing work on using linear combinations of
kernels for kernel learning, called multiple kernel learning
(Gönen & Alpaydın, 2011).

Optimization for our proposed method is complicated by
the non-smooth `1,2-norm regularization penalty. Algo-
rithms for group lasso have addressed this problem through
a variety of approaches. Proximal gradient (Beck &
Teboulle, 2009) has cheap iterations and relatively fast
convergence if combined with acceleration. A block co-
ordinate descent method has also been developed (Qin
et al., 2013). Further, the general Coordinate Gradient De-
scent method (Tseng & Yun, 2009) can also be specialized
to `1,2-penalized problems (Meier et al., 2008; Friedman
et al., 2010). Recent work (Wytock et al., 2014) on the
group fused lasso has sidestepped the `1,2-norm penalty,
transforming it to a smooth objective with non-negativity
constraint. For Sparse Additive Models, parameters are
typically optimized via the backfitting algorithm (Raviku-
mar et al., 2009), a special case of (block) coordinate de-
scent with group sizes of 1. In our work, we experiment
with several optimisation methods for non-smooth objec-
tives. In our experiments, Block Coordinate Gradient De-
scent provided the best performance.

The remainder of this paper is organised as follows. In
Section 2 we present the Add-KR procedure and the as-
sociated optimisation objective. In Section 3 we present
experiments on synthetic and real datasets in both settings
described above.

2. Additive Kernel Regression
2.1. Problem Statement & Notation

Let f : X → R be the regression function f(·) =
E[Y |X = ·]. Here X 3 x = [x1, . . . , xD] ∈ RD and
X ⊂ RD. We have data (Xi, Yi)

n
1 and wish to obtain an

estimate f̂ of f . In this work, we seek an additive approxi-
mation to the function. That is, f̂ can be expressed as,

f̂(x) = f̂ (1)(x) + f̂ (2)(x) + · · ·+ f̂ (M)(x) (1)

where each f̂ (j) : X → R.

The work in Hastie & Tibshirani (1990) treats f̂ as a sum
of one dimensional components. In Equation (1) this cor-
responds to setting M = D and have each f̂ (j) act on
only the j th coordinate. In this work, we would like to be
more expressive than this model. We will consider addi-
tive models on more than just one dimension and more im-
portantly allows for overlap between the groups. For e.g.
f̂(x1, x2, x3) = f̂ (1)(x1) + f̂ (2)(x1, x2) + f̂ (3)(x2, x3).
Ravikumar et al. (2009) treat f̂ as a sparse combination of
one dimensional functions. While this is seemingly restric-
tive than (Hastie & Tibshirani, 1990), the sparse approxi-
mation may provide favourable bias-variance tradeoffs in
high dimensions. Drawing inspiration from this, we will
also consider models where M is very large and seek a
sparse collection of groups to approximate the function -
i.e. f̂ (j) = 0 for several j.

2.2. Additive Least Squares Regression via Kernels

One of several ways to formulate a nonparametric re-
gression problem is to minimise an objective of the form
J(f) =

∑n
i=1 `(f(Xi), Yi) + λξ(f) over a nonparametric

class of functions F . Here ` is a loss function and ξ is a
term that penalises the complexity of f . Several nonpara-
metric regression problems such as Gaussian processes,
smoothing splines and natural splines can be formulated
this way. Or particular interest to us is Kernel Ridge Re-
gression (KRR) which uses a positive semidefinite kernel
k : X × X → R (Scholkopf & Smola, 2001) and takes F
is taken to be the reproducing kernel Hilbert space (RKHS)
Hk corresponding to k. ξ is taken to be the squared RKHS
norm of f and ` the squared error loss. Accordingly, KRR
is characterised via the optimisation objective,

f̂ = argmin
f∈Hk

n∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2Hk

However, like most nonparametric regression models, KRR
suffers from the curse of dimensionality. To obtain an ad-
ditive approximation we consider M kernels k(j) and their
associated RKHSs Hk(j) . In equation (1), we will aim for
f̂ (j) ∈ Hk(j) . Accordingly we consider an optimisation
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problem of the following form where we jointly optimise
over f̂ (1), . . . , f̂ (M),

{f̂ (j)}Mj=1 = argmin
f(j)∈H

k(j) ,j=1,...,M

F
(
{f (j)}Mj=1

)
where,

(2)

F
(
{f (j)}Mj=1

)
=

1

2

n∑
i=1

Yi − M∑
j=1

f (j)(x(j))

2

+ λ

M∑
j=1

‖f (j)‖H
k(j)

.

Our estimate for f is then f̂(·) =
∑

j f̂
(j)(·).

Via a representer theorem like argument it is straightfor-
ward to show that f (j) will be in the linear span of the
reprodcing kernel maps of the training points Xn

1 – i.e.
f (j)(·) =

∑
j α

(j)
ik

(j)(·, Xi). Then, the j th term in the

second summation can be written as α(j)>K(j)α(j), where
K(j) ∈ Rn×n ∀j such that K(j)

rc = k(j)(Xr, Xc). Af-
ter further simplification, the objective can be written as,
α = argminα∈RnM F (α) where,

F1(α) =
1

2

∥∥∥Y− m∑
j=1

K(j)α(j)
∥∥∥2
2
+λ

M∑
j=1

√
α(j)>K(j)α(j).

(3)
Here α(j) ∈ Rn ∀j, α = [α(1)>, . . . , α(M)>]> ∈
RnM and Y = [Y1, . . . , Yn]

> ∈ Rn. Given the solu-
tion to the above, our estimate is obtained via f̂(·) =∑M

j=1

∑n
i=1 α

(j)
ik

(j)(·, X(j)
i ). Equation (3) will be the

(convex) optimisation problem in our algorithm. We call
this algorithm Additive Kernel Regression (Add-KR). Note
that we use the sum of RKHS norms (as opposed to a sum
of squared norms) to encourage sparse solutions.

2.3. Applications

We propose two concrete applications for the additive re-
gression framework proposed above. Our choices of ker-
nels k(j), j = 1 . . .M are different in both settings.

Application 1 (High Dimensional Regression): The first
is when we wish to reduce the statistical complexity of the
function we to be learned in large D. A kernel directly de-
fined on D dimensions is complex since it allows for inter-
actions of all D variables. We may reduce the complexity
of the kernel by constraining how these variables interact.
Here we consider kernels of the form,

k(1)(x, x′) =
∑

1≤i≤D

ki(xi, x
′
i) (4)

k(2)(x, x′) =
∑

1≤i1<i2≤D

ki1(xi1 , x
′
i1)ki2(xi2 , x

′
i2)

k(M)(x, x′) =
∑

1≤i1<i2<···<iM≤D

M∏
d=1

kid(xid , x
′
id
)

Here ki : R×R→ R is a base kernel acting on one dimen-
sion. k(j) has

(
D
j

)
terms and exhaustively computing all

of them is computationally intractable. Fortunately, by ob-
serving that the j th kernel is just the j th elementary symmet-
ric polynomial (ESP) on the base kernel values we may use
the Newton Girard formula to efficiently compute them re-
cursively. Precisely, by denoting κs =

∑D
i=1(ki(xi, x

′
i))

s

we have,

k(j)(x, x′) =
1

j

j∑
d=1

(−1)d−1 κj k(j−d)(x, x′)

Computing theM kernels this way only requiresO(DM2)
computation. We call these the ESP Kernels. A similar
kernel using a similar trick for computing it was used by
Duvenaud et al. (2011).

Application 2 (Function Selection): The second setting
is when we are explicitly searching for a sparse subset of
functions to explain the data. For instance, in neurological
and genomics models, while the function of interest has
several variables the interactions are sparse and of lower
order. For example, a function of 4 variables may take the
form

f(x) = f (1)(x1) + f (2)(x2, x3) + f (3)(x1, x4)

That is, the function decomposes as a sum of functions act-
ing on small groups of variables. Given a large set of can-
didate groups, the task at hand is to recover the groups and
the individual functions acting on those groups. In this set-
ting, M and our RKHSs are determined by the problem –
Hk(j) contains functions on the variables belonging to the
j th candidate group. This idea was first explored by (Bach,
2008) using a slightly different objective.

2.4. Implementation

We now describe the implementation details of the above
algorithm. Let the Cholesky decomposition of K(j)

be K(j) = L(j)L(j)>. Denote β(j) = L(j)>α(j).
Then, our objective can be written in terms of β =

[β(1)>, . . . , β(M)>] as,

F2(β) =
1

2

∥∥∥Y − m∑
j=1

L(j)α(j)
∥∥∥2
2
+ λ

M∑
j=1

‖β(j)‖2 (5)

The objective, in the above form is well studied in optimi-
sation literature as the group LASSO. When the number of
parameters for each group are small, which is typically the
case in group LASSO problems, block coordinate descent



Additive Least Squares Regression

(BCD) is believed to be the state of the art solver. However,
in our case the number of parameters per group is large –
equal the number of samples n. In this regime BCD is slow
since it requires a matrix inversion at each step. In par-
ticular, we found that Block Coordinate Gradient Descent
(BCGD) and Alternating Direction Method of Multipliers
(ADMM) significantly outperformed BCD in our experi-
ments. In fact, we experimented with several optimisation
methods to minimise the objective which included Subgra-
dient method, Proximal Gradient method (with and without
acceleration), BCD, BCGD and ADMM. Figure 1 depicts
the empirical convergence of these methods on a synthetic
problem. In all our experiments, we use BCGD.

The penalty term λ was chosen using 5-fold cross vali-
dation. Our implementation first solves for the largest λ
value. For successive λ values, we initialise BCGD at the
solution of the previous λ value. This warm starts proce-
dure significantly speeds up the running time of the entire
training procedure.

3. Experiments
3.1. Application 1: ESP Kernels for High Dimensional

Regression

In our implementations of the ESP kernels, for the one di-
mensional base kernel we use the RBF kernel ki(x, x′) =
exp((x− x′)2/h2) with bandwidth h. Since cross validat-
ing on all the kernel bandwidths is expensive, we set it to
h = cσn−0.2. This follows other literature (Györfi et al.,
2002; Tsybakov, 2008; Ravikumar et al., 2009) using simi-
lar choices for kernel bandwidths. The constant c was hand
tuned – we found that the performance of our methods was
robust to choices of c between 5 and 40. The value of M
was also hand tuned and set to M = min(D/4, 10).

We compare Add-KR against kernel kidge regres-
sion(KRR), Nadaraya Watson regression (NW), locally
linear regression (LL), locally quadratic regression (LQ),
Gaussian process regression (GP), k nearest neighbors re-
gression (kNN) and support vector regression (SVR). For
GP and SVR we use the implementations in Rasmussen
& Nickisch (2010); Chang & Lin (2011) respectively. For
the other methods, we chose hyper parameters using 5-fold
cross validation. The Additive Gaussian process model of
Duvenaud et al. (2011) is also a candidate but we found that
inference was extremely slow beyond a few hundred train-
ing points (For e.g. it took > 50 minutes with 600 points
whereas Add-KR ran in under 4 minutes).

First, we construct a smooth synthetic 20 dimensional func-
tion. We train all methods on n training points where n
varies from 100 to 1100 and test on 1000 points sampled
independently. The results are shown in Figure 2(a). Add-
KR outperforms all other methods. We suspect that NW,
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Figure 1. (a): Comparison of the different methods to optimise
our objective. In (a) The x-axis is the iteration and in (b) the
x-axis is time. In both figures the y-axis is the objective. Both
figures are in log-log scale.
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Figure 2. (a): Comparison of Add-KR using ESP Kernels against
other nonparametric methods on a 20 dimensional toy problem.
The x-axis denotes the number of training points and the y-axis is
the error on a test set. (b): Solution path with n = 600 samples
for the synthetic problem. The x-axis shows the regularisation
parameter while the y-axis plots ‖f (j)‖H

k(j)
= ‖β(j)‖. The true

nonzero functions are depicted in red.
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Dataset (D, n) Add-KR KRR kNN NW LL LQ GP SVR
Speech (21, 520) 0.02269 0.02777 0.09348 0.11207 0.03373 0.02407 0.02531 0.22431
Music (90, 1000) 0.91627 0.91922 1.00001 1.05745 1.25805 1.06482 0.94329 1.07009
Tele-motor (19, 300) 0.06059 0.06488 0.13957 0.20119 0.09455 0.08774 0.06678 0.38038
Housing (12, 256) 0.31285 0.35947 0.43619 0.42087 0.31219 0.35061 0.67566 1.15272
Blog (91, 700) 1.43288 1.53227 1.73545 1.49305 1.69234 1.71321 1.64429 1.66705
Forest Fires (10, 210) 0.30675 0.32618 0.40565 0.37199 0.35462 0.33881 0.29038 0.70154
Propulsion (15, 400) 0.04167 0.01396 0.15760 0.11237 0.182345 0.19212 0.00355 0.74511

Table 1. The test set errors of all methods on 7 datasets from the UCI repository. The dimensionality and number of training points is
indicated next to the dataset. The best method(s) for each dataset are in bold. Add-KR performs best in most of the datasets and is within
the top 3 in all of the datasets. In the Forest Fires dataset it is only slightly worse than GP. In the Propulsion dataset, GP significantly
outperforms all other methods.

LL and kNN perform very poorly since they make very
weak smoothness assumptions about the function.

Next, we compare all methods on 7 moderate to high di-
mensional datasets from the UCI repository. All inputs and
labels were preprocessed to have zero mean and standard
deviation 2. We split the datasets into roughly two halves
for training and testing. The results are given in Table 1.
Add-KR outperforms all alternatives in most cases.

3.2. Setting 2: Function Selection

In this section, we study the ability of our method to recover
the true function. We use RBF kernels on each group by
setting kernel bandwidths for each dimension as same as
explained above.

First, we conduct the following synthetic experiment.
We generate 600 observations from the following 50-
dimensional additive model:

yi =f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4)+

f1(xi5xi6) + f2(xi7xi8) + f3(xi9xi10)+

f4(xi11xi12) + εi

where,

f1(x) = −2 sin(2x), f2(x) = x2 − 1

3
,

f3(x) = x− 1

2
, f4(x) = e−x + e−1 − 1

with noise εi ∼ N (0, 1). Thus, 46 out of 50 individual fea-
tures are irrelevant, and 1221 out of 1225 pairwise features
are irrelevant. As candidates, we use all functions of first
and second order interactions – i.e the kernels characters-
ing our RKHSs are of the form k(xi, x

′
i) for i = 1, . . . , 50

and k(xi, xi)k(xj , xj) for 1 ≤ i < j ≤ 50. Therefore, in
this experiment M = 1275.

We plot the solution path for two independent datasets. The
plots give the RKHS norm of the function on each kernel
‖f̂ (j)‖H

k(j)
= ‖β(j)‖2 for all kernels against the value of

the regularization parameter λ. The results are shown in

Figure 2(b). As the figure indicates, several of the false
functions are driven to 0 fast whereas the true functions
persist for longer. At λ = 200 we recover all true nonzero
functions for a true positive rate of 100% and have 47 false
negatives for a false positive rate of 3.7%

4. Conclusion
We proposed a framework for additive least squares re-
gression. We design our estimate to be a sum of func-
tions where the functions are obtained by jointly optimis-
ing over several RKHSs. The proposed framework is use-
ful for high dimensional nonparametric regression since it
provides favourable bias variance tradeoffs in high dimen-
sions. Further, it can also be used for the recovery of sparse
functions when the underlying function is additive. Our ini-
tial experimental results indicate that our methods are su-
perior or competitive with existing methods in both fronts.

Going forward, we wish to study the theoretical properties
of such penalized additive models especially focusing on
rate of convergence and sparsistency.
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